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Abstract: Intermediate filaments are abundant cytoskeletal components of epithelial tissues.
They have been implicated in overall stress protection. A hitherto poorly investigated area of
research is the function of intermediate filaments as a barrier to microbial infection. This review
summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial
organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect
the organism against microbial insults. We then present examples of direct interaction between
viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this
affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of
infection, and host response. These observations not only provide novel insights into the dynamics
and function of intermediate filaments but also indicate future avenues to combat microbial infection.
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1. Intermediate Filaments: Organization and Function

Intermediate filaments (IFs) together with actin filaments and microtubules are major components
of the cytoskeleton. They provide mechanical tissue stability and contribute to many cellular
processes such as vesicle trafficking, organelle positioning, cell cycle regulation, differentiation, and
cell motility [1–4]. Although IFs are not essential for any of these functions, they provide an abundant
buffering system protecting against various types of stress, be it physical, chemical, or microbial.
This property is most relevant in epithelia, which are exposed to multiple environmental stressors.

The cytoplasmic IF cytoskeleton of mammalian epithelial cells consists of equal amounts of
type I and type II keratin polypeptides. Type I and type II keratins form stable heterodimers that are
arranged in parallel and are tightly attached through hydrophobic coiled-coil interactions between
their α-helical central rod domains, which are flanked by variable amino- and carboxyterminal end
domains [5–8]. The mechanisms of subsequent tetramer assembly and integration into mature IFs
are only partly understood. In vitro observations revealed that they involve certain intermediate
steps starting with two dimers associating in an antiparallel and partially staggered fashion to
form the symmetric non-polar tetramer, which constitutes the main soluble keratin pool in living
cells [5,9]. Tetramers associate laterally into unit length filaments that assemble longitudinally into
the 8–12 nm keratin filaments [10]. These filaments form complex three-dimensional networks in vivo
with cell type-specific subcellular arrangements such as the subapical enrichment in the polarized
epithelial cells of the intestine, the predominant localization underneath the cell cortex in glandular
epithelia and the pancytoplasmic accumulation of dense bundles in epidermal keratinocytes ([11,12];
see also Figure 1). A major tenet of this review is that this cell type-specific arrangement determines
epithelial resilience against environmental insults. This notion is supported by multiple studies in
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cell culture systems and transgenic animals demonstrating that the presence and spatial organization
of keratin IFs is a crucial prerequisite to protect epithelial cells against different kinds of mechanical
and non-mechanical stress [1,13–19]. Furthermore, multiple human diseases attest to the important
function of keratins in maintaining epithelial tissue integrity [20,21]. For example, mutations of the
epidermal keratins K5 and K14 have been identified in the human skin disease Epidermolysis bullosa
simplex, which is characterized by excessive blister formation upon minor mechanical trauma [22,23].
This goes along with the formation of large cytoplasmic aggregates containing hyperphosphorylated
keratins [24–26]. Furthermore, it has been suggested that keratin polymorphisms render epithelial
tissues more susceptible to environmental stressors [3,27,28].

This review extends previous reviews on related topics (e.g., [29–31]) and reviews dealing with
interactions of other types of IFs with microbes (e.g., [32]). In this review, we will elaborate on the
overall barrier function of keratins in stratified and simple epithelia and how this relates to specific
interactions with microbial pathogens.
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Figure 1. IFs form complex three-dimensional networks with cell type specific subcellular 
arrangements providing barrier function in simple and stratified epithelia. (A) Keratin IFs (blue) are 
subapically enriched in a dense filamentous network in the simple epithelium of the intestine. They 
localize just below the microvillar brush border that protrudes into the nutrient-filled intestinal lumen. 
The cylindrical epithelial cells are connected by junctional complexes, which encompass keratin-
anchoring desmosomes (green), and rest all on a basal lamina; (B) The keratin IFs (blue) of the 
stratified epithelium of the cornea form dense 3D-networks that traverse the entire cytoplasm and are 
attached to desmosomes (green) at cell-cell contact sites. Keratin fragments with antibacterial activity 
are released into the tear fluid. The keratin cytoskeleton of the basal cells is anchored to 
hemidesmosomes (red), which attach to the underlying extracellular matrix of the basement 
membrane; (C) The keratin IF cytoskeleton of the epidermis, which is the prototype of a multilayered 
cornified epithelium, increases in density in the flattened suprabasal cell layers and becomes 
compacted as part of the cornified envelope of the dead cells in the uppermost stratum corneum which 
are continuously shed from the epithelium. While desmosomes (green) are present in all cell layers, 
hemidesmosomes (red) are restricted to the cuboidal basal cell layer. 

2. Barrier Function of Intermediate Filaments in Stratified Epithelia 

Epithelial cell fragility and lysis as a consequence of compromised mechanical stability are 
observed in a large number of epidermal keratinopathies that are caused by single point mutations 
in keratin-encoding genes [33–35]. The histological phenotypes include blister formation and 
hyperkeratosis [33,36–39]. Corresponding phenotypes were also described in keratin-mutant mice 
[40]. Consequently, dramatically increased transepidermal water loss and increased toluidine blue 
permeability were reported in keratin-deficient epidermis [41,42]. 

Besides providing a mechanical barrier, keratins have been shown to actively contribute to 
barrier formation in the epidermis. Thus, keratin K10-deficient mice present reduced 
sphingomyelinase activity, which generates ceramides that are a major component of the 
extracellular lipid lamellae in the epidermal stratum corneum [41]. Furthermore, complete absence of 
keratins perturbs the formation of the cornified envelope in suprabasal keratinocytes [42]. In addition, 

Figure 1. IFs form complex three-dimensional networks with cell type specific subcellular arrangements
providing barrier function in simple and stratified epithelia. (A) Keratin IFs (blue) are subapically
enriched in a dense filamentous network in the simple epithelium of the intestine. They localize just
below the microvillar brush border that protrudes into the nutrient-filled intestinal lumen. The cylindrical
epithelial cells are connected by junctional complexes, which encompass keratin-anchoring desmosomes
(green), and rest all on a basal lamina; (B) The keratin IFs (blue) of the stratified epithelium of the
cornea form dense 3D-networks that traverse the entire cytoplasm and are attached to desmosomes
(green) at cell-cell contact sites. Keratin fragments with antibacterial activity are released into the tear
fluid. The keratin cytoskeleton of the basal cells is anchored to hemidesmosomes (red), which attach
to the underlying extracellular matrix of the basement membrane; (C) The keratin IF cytoskeleton of
the epidermis, which is the prototype of a multilayered cornified epithelium, increases in density in the
flattened suprabasal cell layers and becomes compacted as part of the cornified envelope of the dead cells
in the uppermost stratum corneum which are continuously shed from the epithelium. While desmosomes
(green) are present in all cell layers, hemidesmosomes (red) are restricted to the cuboidal basal cell layer.

2. Barrier Function of Intermediate Filaments in Stratified Epithelia

Epithelial cell fragility and lysis as a consequence of compromised mechanical stability are
observed in a large number of epidermal keratinopathies that are caused by single point mutations
in keratin-encoding genes [33–35]. The histological phenotypes include blister formation and
hyperkeratosis [33,36–39]. Corresponding phenotypes were also described in keratin-mutant mice [40].
Consequently, dramatically increased transepidermal water loss and increased toluidine blue
permeability were reported in keratin-deficient epidermis [41,42].

Besides providing a mechanical barrier, keratins have been shown to actively contribute to barrier
formation in the epidermis. Thus, keratin K10-deficient mice present reduced sphingomyelinase
activity, which generates ceramides that are a major component of the extracellular lipid lamellae
in the epidermal stratum corneum [41]. Furthermore, complete absence of keratins perturbs the
formation of the cornified envelope in suprabasal keratinocytes [42]. In addition, keratin depletion
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and presence of mutant keratins lead to reduction in junctional proteins affecting junction formation
and dynamics [19,43–45].

Interestingly, gene expression signatures in human patients with the skin disease
Pachyonychia congenita carrying mutations in K16 or its partner K6 as well as K16 null mice reveal an
enrichment of genes involved in inflammation and innate immunity which may be a consequence
of the perturbed skin barrier [46]. Furthermore, deletion of the suprabasal keratin K1 in transgenic
mice resulted in inflammasome activation and IL-18 processing [47]. The observed skin pathology
presenting erosions, hyperkeratosis, and barrier defects could be partially rescued by IL-18 depletion
in these mice [47]. A different role has been assigned to keratin K17, whose expression is induced
in epidermal keratinocytes upon environmental stress [48]. K17 appears to stimulate inflammatory
responses by cytokine induction through signaling pathways and possibly even direct modulation of
gene transcription [48–51].

Taken together, we posit that keratins have an overall protective function against microbial
infection. This function is not limited to providing a structural barrier but includes active mechanisms
that trigger complex responses.

3. Keratin-Microbe Interactions in Stratified Epithelia

In the following paragraphs, we will focus on specific host-pathogen interactions that have been
described for stratified epithelia. Table 1 lists examples of pathogen-keratin interaction that utilize and
disrupt the keratin-dependent barrier.

Table 1. List of specific pathogen-keratin interactions in stratified (orange) and simple (green) epithelia.

Pathogen Mechanism Effect Cell Type Reference

Staphylococcus
aureus

Staphylococcal surface protein
clumping factor B (ClfB)-dependent
adherence to K10

Epithelial
colonization

Squamous
nasal
epithelial cells

[52]

Streptococcus
agalactiae

Streptococcal surface-localized
serine-rich repeat protein Srr-1
binding to K4

Epithelial
colonization Saliva extracts [53]

Human
papilloma virus
type 16

Association of HPV type 16 E1ˆE4
protein with K18 followed by K18-S33
and K18-S52 phosphorylation and
ubiquitinylation

Keratin network
disruption

SiHa and
HaCaT cells [54]

Herpes simplex
virus type 2 Association of US2 with K18 Keratin network

disruption
Vero and
A431 cells [55]

Herpes simplex
virus type 2

Association of US3 with K17 followed
by keratin phosphorylation
and ubiquitinylation

Keratin network
disruption Hep2 cells [56]

Porphyromonas
gingivalis

Cleavage of K6 at K357-Y358 and
K378-Q379 by lysine-specific gingipain

Induction of
inflammation

Gingival
epithelial cells [57]

Pseudomonas
aeruginosa

Release of K6-derived
antibacterial peptides Bacteriotoxicity hTCEpi cells [58]

Enteropathogenic
Escherichia coli

K18-dependent actin
filament reorganization Pathogen docking HeLa cells [59]

Salmonella
enterica serovar
typhimurium

Interaction of secreted Salmonella
invasion protein SipC with K18 Pathogen docking HEp-2 cells [60]

Salmonella
enterica serovar
typhimurium

Interaction of Salmonella type III
secretion translocon protein
SspC with K8

Pathogen docking HeLa cells [61]



Cells 2016, 5, 29 4 of 18

Table 1. Cont.

Pathogen Mechanism Effect Cell Type Reference

Shigella flexneri Binding of Shigella translocon pore
protein IpaC to K18 Pathogen docking [62]

Enterobacteriaceae
Binding of the serine protease
autotransporter of
Enterobacteriaceae Pet to K8

Induction of
cytotoxicity

HT-29 and
HEp-2 cells [63]

Rotavirus Phosphorylation of K8 Keratin network
disruption HT29 cells [64]

Adenovirus Cleavage of aminoterminal K18 head
domain at position 73

Keratin network
disruption

HeLa and 293
cells [65,66]

Rhinovirus Cleavage of aminoterminal K8 head
domain at position 14 by 2A proteinase

Keratin network
disruption

HeLa cell
extracts [67]

Chlamydia
trachomatis

Cleavage of K8 by chlamydial
protease-like activity factor CPAF

Keratin network
disruption HeLa cells [68]

Chlamydia
pneumoniae

Cleavage of K8 and K18 by chlamydial
protease-like activity factor CPAF

Keratin network
disruption HL cells [69]

Trypanosoma
cruzi

Binding of peptide TS9 of glycoprotein
gp85 to K8/K18 (K14, K19, K20)

Cytoplasmic
proliferation

LLC-MK2 cell
extract [70]

Spraguea lophii Phosphorylation of K4 and K13 in the
outer spore envelope Polar tube release [71]

3.1. Epithelial Colonization

The commensal Staphylococcus aureus permanently colonizes the anterior part of the nasal cavity.
The staphylococcal surface receptor clumping factor B (ClfB) plays a pivotal role in this process. It was
shown that ClfB binds to epidermal K10 [52,72,73], which is typically found in cornified stratified
epithelia [74,75]. The interaction between ClfB and K10 enhanced adherence of Staphylococcus aureus to
epithelial cells and thereby supported epithelial colonization, notably in the squamous epithelial cells
of the nasal epithelium [76]. In yeast two-hybrid binding assays ClfB also interacted with K8, which
is predominantly expressed in simple epithelia [77], the physiological relevance of which remains to
be assessed.

In another study, binding was detected between K4 and the surface serine-rich repeat protein Srr-1
of Streptococcus agalactiae, a commensal bacterium of the human gastrointestinal and female vaginal
tract [53]. K4 is prominent in non-cornified stratified epithelia lining the oral mucosa, esophagus, and
vagina [74,75]. Binding of Srr-1 was localized to the carboxyterminal 255 amino acids of K4 and was
shown to be needed for adherence of Streptococcus agalactiae to epithelial cells in a dose-dependent
fashion [53].

Interactions between keratins and bacterial surface proteins may be a rather wide-spread and
common phenomenon as suggested by Tamura and Nittayajarn [78]. These authors found that soluble
K8 bound to all of six group B streptococci strains that they tested as well as to four other gram-positive
cocci, i.e., Staphylococcus aureus, Lactococcus lactis, Enterococcus faecalis, and Streptococcus pyogenes.
An unresolved conundrum is whether keratins are exposed at the cell surface physiologically or need
to be set free from their cytoplasmic compartment, for example by bacterial proteases.

3.2. Keratin Network Disruption

A very well examined situation of pathogen-keratin interaction in stratified epithelia is human
papilloma virus (HPV) type 16 infection. During the infection cycle the viral E1ˆE4 protein accumulates
in the upper layers of infected epithelia such as the stratified cervical epithelium comprising up
to 30% of total cell protein in some lesions [54,79]. The E1ˆE4 protein forms amyloid-like fibers
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after cleavage of its aminoterminal 17 amino acids by the cytoplasmic cysteine protease calpain [80].
E1ˆE4 protein-containing amyloid fibers are initially detected in the suprabasal cells, which contain
active calpain [80]. The multimeric E1ˆE4 protein-derived aggregates associate with keratin filaments
containing K10, K13, K14, and K18 [54]. Based on co-localization, co-immunoprecipitation, and in vitro
binding assays a direct interaction was described for K18 and the aminoterminus of E1ˆE4 protein [81].
Of note, keratin network dynamics were reduced in the presence of E1ˆE4 protein in cultured SiHa
cervical epithelial cells [81]. The interaction between E1ˆE4 protein and keratin was favored by
phosphorylation of T57 in E1ˆE4 protein through extracellular signal regulated kinase ERK [82].
In addition, other kinases such as cyclin-dependent kinase, protein kinase A and protein kinase Cα

may be implicated [30,82]. The importance of E1ˆE4 protein activity for keratin network modification
was further underscored by the exclusive detection of T57-phosphorylation of E1ˆE4 protein in the
intermediate cell layers of epidermal raft cultures, i.e., within the cell layers in which productive
infection occurs [82]. Furthermore, keratins become hyperphosphorylated and are ubiquitinylated in
HPV-infected cells [54]. Remarkably, microtubules and actin filaments as well as the nuclear lamin
IFs were unaffected [79]. A likely consequence of the selective keratin network collapse is enhanced
release of viral particles which are then available for further infection of epithelial cells.

Herpes simplex virus type 2 (HSV-2) infects preferentially the skin and genital mucous membranes.
It synthesizes the cytoplasmic ubiquitin-interacting US2 protein during the late phase of infection [83].
US2 has been implicated in the release of viral particles [84]. K18 was identified as a binding partner
of US2 in a yeast two-hybrid screen [55]. This interaction was confirmed by co-immunoprecipitation
experiments and co-localization studies of infected cultured cells. The keratin network in these cells
was considerably altered presenting thickened and clumped keratin filaments, preferentially in the cell
periphery. Later on, Murata et al. [56] observed that expression of the HSV-2 protein kinase US3, which
is involved in cell morphology alterations and disruption of the actin cytoskeleton [85], enhanced K17
phosphorylation and ubiquitination. This was also accompanied by appearance of thicker keratin
filaments and keratin network disruption. These authors [56] further presented evidence that the US3
kinase directly phosphorylated K17 and showed that this interaction elicits distinct cytopathic effects.

3.3. Induction of Inflammation

Porphyromonas gingivalis is a major etiological bacterium of periodontal disease. It secretes the
lysine-specific protease gingipain [86,87]. Among multiple targets, keratins were described as potential
substrates for this protease by Tancharoen and co-workers [57]. They detected a novel K6 fragment in
the gingival crevicular fluid of periodontal disease patients. This 19 amino acid-long fragment was
shown to be generated by lysine-specific gingipain treatment of cultured cells [57]. Interestingly, this
peptide induced gingival fibroblast migration, secretion of interleukins 6 and 8, and production of
monocyte chemoattractant protein 1 [57]. This example illustrates nicely how a pathogen destroys the
keratin-based barrier and simultaneously initiates an inflammatory response.

3.4. Bacteriotoxicity

An extracellular protective function of keratins was recently described for the cornea. Peptide
fragments derived from the carboxyterminus of keratin K6a were identified in a crude extract from
differentiated cultured corneal epithelial cells [58]. These peptides exhibited strong antibacterial
activity against Pseudomonas aeruginosa and, more importantly, against the ocular pathogens
Staphylococcus aureus and Streptococcus pyogenes [58]. Detailed analysis of an amphipathic 19-mer
peptide rapidly killed cytotoxic Pseudomonas aeruginosa in either water or at physiological ionic
conditions. This was mediated through specific binding to the bacterial cytoplasmic membrane
causing subsequent leakage [58]. These observations may explain how the corneal epithelium is
protected from microbes such as Staphylococcus aureus that are resistant to lysozymes in tear fluid
but populate the upper airway ([88] and Figure 1B). Since the expression of K6a is not restricted to
the cornea [74,75], it may have similar functions in other epithelia such as the epidermis and various
mucosal surfaces.
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4. Intermediate Filaments Mediating Barrier Function in Simple Epithelia

Keratin IFs in simple epithelia are mostly concentrated underneath the plasma membrane
with different degrees of polarization and cytoplasmic localization [89–91]. The most extreme
distribution has been reported for enterocytes, in which keratin IFs are subapically enriched in
a dense filamentous network just below the actin-rich terminal web, which anchors the apical
microvilli ([92–94] and Figure 1A). High resolution imaging of vital intestinal mucosa of knock-in mice
producing K8-yellow fluorescent protein showed nicely the subapical concentration of keratins together
with submembraneous localization at the lateral membrane domains but no detectable cytoplasmic
fluorescence [89] in contrast to fixed tissue samples [89,90]. Whether this arrangement performs the
same structural reinforcing role as the pan-cytoplasmic keratin network in stratified epithelia is not so
clear [33]. It is generally accepted, however, that keratins also play a crucial role in the stress response
of simple epithelia [95–97]. In accordance, increased susceptibility to toxic liver damage was observed
in Krt18´/´ mice [33]. These mice deposit K8 aggregates in hepatocytes which share features with
Mallory bodies that are observed in alcoholic liver cirrhosis. In contrast, loss of K8 or relative excess
of K18 over K8 prevent Mallory body formation although increased sensitivity to toxic liver damage
is still detectable in these situations. Accordingly, defects in K8 and K18 were described in human
liver disorders [98–100] and were also reported in chronic pancreatitis [101] and inflammatory bowel
disease [102], while others have reported no predisposition of K8/K18/K19 variants to pancreatitis and
inflammatory bowel disease [103–105]. Although the identified mutations are not lethal, they appear
to negatively affect epithelial resilience, predisposing affected patients to a breakdown of the epithelial
barrier, especially in the presence of physiological stress such as osmotic challenges and mechanical
strain and, even more so, in pathological stress situations such as microbial insults [27,102]. In support,
colonic hyperplasia colitis and rectal prolapse are observed in K8´/´ mice [106]. This phenotype
is characterized by a marked increase in TCRβ-positive and CD4-positive T cells infiltrating the
lamina propria of the colon mucosa which is coupled to enhanced Th2 cytokine (IL-4, IL-5 and IL-13)
production [107]. Consistent with this observation it was recently shown that K8/K18 are able to bind to
the inflammasome to regulate the IL-22 inflammatory response through IL-18 and maintain the barrier
function of the intestinal epithelium, while K8´/´ mice display increased inflammation, barrier defects,
and tumorigenesis through inflammasome activation [108]. Antibiotic treatment markedly decreased
colonic inflammation [107]. Later on, Habtezion, et al. [109] demonstrated differential regulation of
genes involved in apoptosis in K8+/+ vs. K8´/´ murine colonocytes resulting in apoptosis resistance
in a microflora-dependent manner. Even heterozygous K8+/´ animals presented longer colonic crypts
but did not exhibit increased apoptosis and inflammation. Yet, they displayed higher sensitivity to
dextran sulphate sodium in a colitis disease model [110].

It was further shown by different groups that simple epithelial keratins protect cells in vitro
against TNFα- and Fas ligand-mediated apoptosis [111–113]. Interestingly, K8/K18 co-localize with
the cytoplasmic domain of TNF receptor 2 and moderate TNF-induced JNK intracellular signaling and
NFκB activation [112]. In inflammatory bowel disease it was observed that the induced inflammatory
response, in turn, leads to the release of damaging oxidants such as H2O2, HOCl, and OH2 [114],
which induce mucosal injury [115] and cause impaired epithelial barrier function by perturbing the
actin and microtubule cytoskeleton [116]. Oxidative stress is also known to induce K8 homodimer
formation, which efficiently prevents filament assembly [99,102]. Homodimer formation has also been
observed upon oxidative stress in liver explants and cultured intestinal cells expressing K8 mutants
that have been identified in patients with inflammatory bowel disease [99,102]. The reported massive
decrease of K8, K18, K19, and vimentin in concert with reduced phosphorylation of K8 in the mucosa of
inflammatory bowel disease patients can be taken as additional indication that inflammatory response
triggers keratin dysfunction as part of a mutually enhancing vicious cycle [117]. Remarkably, K8 levels
and phosphorylation are restored or even elevated in intestinal bowel disease patients with clinical
and endoscopic remission [117].

Another interesting link between inflammatory cytokine production and keratins has been
described by Wang and colleagues [118]. They showed that IL-6 induces upregulation of the mRNA
and protein levels of K8 and K18 in colon adenocarcinoma-derived Caco-2 BBE cells. K8 and K18
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localize in a reticular pattern to the subapical region of these cells upon IL-6 treatment coincident
with a decrease of paracellular flux. This response was abolished by K8 silencing. Furthermore,
administration of dextran sodium sulfate (DSS) significantly increased intestinal permeability in IL-6
knockout mice compared to the wildtype suggesting that IL-6 mediates intestinal barrier protection
via K8/K18 overexpression [118]. On the other hand, high IL-6 levels are also known to perpetuate the
inflammatory state and tissue destruction in inflammatory bowel diseases, in part through induction
of Th17 cells [119,120].

Abnormalities in transport of ions, protein mistargeting, and diarrhea have been noted in the
colon upon keratin depletion even before the development of inflammation [121]. A likely reason is
that keratins fulfil a general scaffolding function for membrane proteins [122]. Very recently Asghar
and co-workers [123] observed a complete loss of the apical localizing chloride transporter (DRA)
explaining the strong diarrhea phenotype occurring in patients with inflammatory bowel disease.
Furthermore, a direct connection between higher levels of microbiota-produced short chain fatty acids
in stool and decreased levels of the monocarboxylate transporter 1 (MCT1) was shown in K8´/´

colon [124]. Even more, keratins have been shown to bind directly to membrane proteins such as
polycystin-1 and CFTR [125–127].

5. Pathogens Interfering with Barrier Function in Simple Epithelia

In the following paragraphs, we briefly summarize observations of specific microbe-host
interactions in simple epithelia that involve keratins.

5.1. Pathogen Docking

Enteropathogenic Escherichia coli (EPEC) are major pathogens causing severe gastroenteritis in
humans [128] by causing attaching and effacing (A/E) lesions that are characterized by microvilli
destruction [129] and subsequent disappearance of the terminal web [130]. Electron-dense zones are
formed underneath the bacterial attachment sites that are rich in F-actin, myosin-II, villin, fodrin,
and tubulin [130,131]. The attachment of EPEC was shown to involve the binding of the translocated
intimin receptor (Tir) to the host adaptor protein Nck [132]. This interaction induced the recruitment
of the neural Wiskott-Aldrich syndrome protein (N-WASP) and the actin-related protein (Arp2/3)
complex which then led to the formation of an actin filament-rich pedestal. These studies were further
extended by Batchelor and co-workers [59] showing that K18 is involved in this process. Evidence was
presented that Tir interacts with K18, which in turn induced pedestal formation by actin accretion and
cytoskeletal reorganization. In this way, a transmembrane bridge is formed connecting the cytoskeleton
of the intestinal epithelial cell and the pathogen ([59] and Figure 2b).

Similarily, involvement of keratins as mediators for pathogen docking and uptake was also noted
in intestinal Salmonella enterica serovar typhimurium infection [60,61]. This bacterium is responsible for
worldwide epidemics because of increasing multi-drug resistance [133]. Salmonella pathogen invasion
involves dramatic rearrangements of the host cytoskeleton and actin polymerization ([134–138] and
Figure 2b). One of the essential proteins for invasion is the secreted invasion protein SipC [139]. Using
a yeast two-hybrid system, Carlson and colleagues [60] identified an interaction between SipC and
K18. Interestingly, expression of the dominant negative K18 mutant K18-R89C was shown to inhibit
Salmonella invasion. It is also noteworthy that K18 is present in M-cells of the intestine [140] which are
the major in vivo entry site of this pathogen [141]. Another interaction was described for K8 and the
Salmonella type III secretion translocon protein SspC. The insertion of SspC into the host cytoplasm is
required for Salmonella invasion and effector molecule translocation [61]. The type III secretion systems
are used by more than 30 other bacterial pathogens, most notably by Shigella spp. [142], to establish
infection though the delivery of effector proteins to the host cell. Shigella flexneri causes bacterial
dysentery by invading colonic and rectal epithelium and causing severe mucosal inflammation and
tissue damage resulting in abscesses and ulceration [143,144]. Very recently, Russo and co-workers [62]
showed that K18 and vimentin interact with the carboxyterminus of the Shigella translocon pore
protein IpaC.
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Figure 2. Highly schematic representation of processes that may occur during microbe-intermediate 
filament interaction in a simple epithelium. (a) The subapically enriched cytoplasmic IF system acts 
as an intracellular protective barrier; (b) IFs form together with the actin cytoskeleton pedestals for 
attached microbes; (c) Intracellular microbes are encaged by IFs; (d) Microbes disrupt the IF cage 
through kinase activities, which modify IF polypeptides and initiate the formation of cytoplasmic IF 
aggregates; (e) Released microbes proliferate and spread to neighboring cells and to the environment 
disrupting the protective apical IF network. Prominent cytoplasmic aggregates containing 
hyperphosphorylated IFs appear. 
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Cytotoxic serine protease autotransporters of Enterobacteriaceae (SPATE) are implicated in 
cytotoxic effects. They promote their own secretion into the extracellular space through the type V 
secretion system [145] representing the most common mechanism used to release virulence factors 
by Gram-negative bacteria [146]. The class 1 SPATE Pet is a common toxin that was recently found 
to bind K8 [63]. It was further shown that the cytopathic effects of Pet are dependent on the 
presence/availability of K8. It was suggested that these effects were mediated through a keratin-
dependent modulation of the clathrin-mediated endocytosis of Pet.  

5.3. Keratin Network Disruption 

As described above for microbial infection of stratified epithelia, increased keratin 
phosphorylation was also observed in infected simple epithelia. Thus, Rotavirus infection, which is 
the most common cause of severe diarrhea in humans, was shown to increase hyperphosphorylated 
K8 [64]. This change was accompanied by reorganization and partial disruption of the keratin 
filament network without visible changes in the actin filament and microtubule networks (Figure 2d). 
At the same time, the soluble keratin pool was considerably increased. Subsequently, increased K8 
and K18 phosphorylation has been shown to correlate with the progression of hepatitis B and C 
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Figure 2. Highly schematic representation of processes that may occur during microbe-intermediate
filament interaction in a simple epithelium. (a) The subapically enriched cytoplasmic IF system acts
as an intracellular protective barrier; (b) IFs form together with the actin cytoskeleton pedestals for
attached microbes; (c) Intracellular microbes are encaged by IFs; (d) Microbes disrupt the IF cage through
kinase activities, which modify IF polypeptides and initiate the formation of cytoplasmic IF aggregates;
(e) Released microbes proliferate and spread to neighboring cells and to the environment disrupting
the protective apical IF network. Prominent cytoplasmic aggregates containing hyperphosphorylated
IFs appear.

Taken together, these examples elucidate how pathogens use the mechanically stable keratin
barrier as an anchor to bind to the cell membrane in order to fulfill host invasion (Figure 2b,c).

5.2. Induction of Cytotoxic Effects

Cytotoxic serine protease autotransporters of Enterobacteriaceae (SPATE) are implicated in cytotoxic
effects. They promote their own secretion into the extracellular space through the type V secretion
system [145] representing the most common mechanism used to release virulence factors by
Gram-negative bacteria [146]. The class 1 SPATE Pet is a common toxin that was recently found to bind
K8 [63]. It was further shown that the cytopathic effects of Pet are dependent on the presence/availability
of K8. It was suggested that these effects were mediated through a keratin-dependent modulation of the
clathrin-mediated endocytosis of Pet.

5.3. Keratin Network Disruption

As described above for microbial infection of stratified epithelia, increased keratin
phosphorylation was also observed in infected simple epithelia. Thus, Rotavirus infection, which is
the most common cause of severe diarrhea in humans, was shown to increase hyperphosphorylated
K8 [64]. This change was accompanied by reorganization and partial disruption of the keratin filament
network without visible changes in the actin filament and microtubule networks (Figure 2d). At the
same time, the soluble keratin pool was considerably increased. Subsequently, increased K8 and K18
phosphorylation has been shown to correlate with the progression of hepatitis B and C ([147,148]
and Figure 2d,e). Another example of network disruption was described by Toivola et al. [149] using
coxsackievirus B4 variants CVB4-V and CVB4-P, which induce acute/chronic pancreatitis and chronic
pancreatitis, respectively. Infection with CVB4-V was shown to lead to an increase of mortality by 40%
in K8´/´ mice compared to either wildtype or K18´/´ mice. Yet all animals displayed reorganization
of the apicolateral K8/K18 network (Figure 2d,e) and loss of acini. The surviving K8´/´ mice
also displayed enhanced signs of inflammation. In contrast, K8´/´ mice were less susceptible to
CVB4-P infection compared to control animals and exhibited more efficient acinar repair. The network
disruption observed during CVB4-P infection was shown to go along with phosphorylation of K8-S438
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and K18-S35. Studies on keratin phosphorylation during CVB4-V infection have not been performed
so far.

Another mechanism to disrupt the keratin network is proteolysis. This mechanism has
been demonstrated for adenovirus. The adenovirus late-acting L3 23-kDa proteinase cleaves the
aminoterminal head domain of K18 in different cell culture systems [65,66]. In conjunction with shut
down of host translation this was shown to result in keratin network disruption with formation of
cytoplasmic granular aggregates thereby favoring cell lysis and release of mature virus particles ([65,66]
and Figure 2d,e). Similarly, it was reported that 2A proteinase cleaves K8 during a late stage of the
infection cycle with human rhinovirus serotype 2 in HeLa cells [67]. This enzyme is also produced by
other rhinoviruses and enteroviruses including coxsackievirus B4 [67].

Another example of microbial proteolytic effects is provided by the Gram-negative
Chlamydia trachomatis, which is the leading cause of sexually transmitted bacterial disease worldwide.
The intracellular pathogen proliferates in cytoplasmic vacuoles that are surrounded by a stabilizing
dense coat of F-actin and IFs ([150] and Figure 2c). Chlamydia trachomatis secretes a protease that
is referred to as chlamydial protease-like activity factor (CPAF) and was shown to cleave K8 and
K18 [68,150]. This processing did not prevent keratin filament formation but presumably modified the
structural scaffolding properties of the keratin filament network [150]. Similarly, CPAF of the related
Chlamydia pneumoniae cleaves K8 and probably also K18 [69]. It is assumed that these proteolytic
activities alter the cytoskeletal actin- and IF-based envelope of the vacuole to support vacuolar
expansion and thereby enhance intravacuolar chlamydial replication ([151] and Figure 2c–e).

5.4. Pathogen Proliferation and Survival

Chagas’ disease is caused by the protozoan parasite Trypanosoma cruzi. The Trypanosoma
glycoprotein gp85 has been implicated in cell invasion [152]. The gp85-derived nonapeptide TS9
has significant cell binding capacity and was found to bind keratins and vimentin in in vitro binding
assays [70]. Using LLC-MK2 kidney epithelial cells, it was further demonstrated that Trypanosoma cruzi
adhesion and cell infection can be reduced by TS9 peptide resulting in a reduced number of parasites
per cell.

Examination of the spore stage of the microsporidian nerve parasite Spraguea lophii suggested a
mechanism by which a pathogen may utilize the keratin filament network for survival [71]. It was
shown that these spores are stabilized by K4 and K13 on their outer envelope thereby preventing
spore activation in Hepes-buffered conditions at pH 7.0. Changes to more basic conditions by adding
polyanionic mucins led to increased keratin phosphorylation, which resulted in keratin dissociation
and disassembly of the outer envelope followed by polar tube release. The polar tube pierces cell
membranes to act as a conduit for the sporoplasm into a new host cell.

6. The C. elegans Intestine as a Model System for Investigating Intermediate
Filament-Microbe Interactions

The striking arrangement of IFs in a dense fibrous layer just below the apical terminal web is
conserved in vertebrates including fish [153], amphibians [154], and mammals [11] as well as in the
nematode Caenorhabditis elegans, where IFs localize to the prominent electron-dense endotube [155–157].
Using transgene strains expressing a fluorescent IF reporter [158] in a mutagenesis screen, the intestinal
filament organizer IFO-1 was identified [159]. It acts as a structural component to localize the IF-rich
endotube to the periluminal subapical region of intestinal cells [159]. Animals lacking IFO-1 showed a
complete loss of the endotube and a dilated lumen. They presented severe growth and development
defects, which are most likely caused by impaired nutrient uptake [our unpublished results and 159].
We propose that these and other recently characterized mutants may exhibit increased sensitivity
against microbial and toxic insults. This notion is supported by the identification of IFO-1 as a bacterial
pore forming toxin-regulated target of MAP kinase [160]. Furthermore, similar alterations of the
endotube concurrent with cytoplasmic invaginations and luminal dilation have been described in
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the intestine of worms that were infected with the microsporidian parasite Nematocida parisii [161].
The infection caused rearrangements of the apically restricted actin and IF cytoskeleton, resulting in
gaps which are presumably used for the non-lytic exit of intracellularly synthesized spores. Similar
luminal alterations were observed by Stutz and colleagues [162] using fungal Coprinopsis cinerea
lectin 2 (CCL2), a non-immunoglobulin carbohydrate-binding protein without enzymatic activity.
This phenotype resulted in developmental delay and premature death. Ultrastructural analyses
revealed highly damaged intestinal cells with loss of microvilli, actin depolymerization, and striking
invaginations of the apical plasma membrane [162].

7. Conclusions and Outlook

Given the crucial function of the keratin cytoskeleton as a barrier to protect the body from
environmental insults, microbes have developed ingenious mechanisms to break down this barrier
for local colonization and subsequent proliferation and spreading. Strengthening the keratin-based
barrier may therefore protect the organism from microbial challenges. In agreement, it has been
shown that the probiotic bacterial strain Bifidobacterium breve increases the expression of K8 in infected
colon carcinoma-derived HT29 cells [163]. A mechanistic understanding of the manifold molecular
interactions between microbes and the epithelial IF cytoskeleton is still in its infancy. Figure 2 illustrates
some of the processes that may occur during microbe-intermediate filament interaction in a simple
epithelium. Key questions that need to be addressed in the future are: (1) What are the precise structural
and functional consequences of microbe-induced post-translational IF modifications? (2) How do the
post-translational IF modifications affect microbial infection and propagation? (3) How do the unique
mechanical properties of the IF system affect microbe-host interaction? (4) How do microbe-induced
IF alterations affect the innate immune response? (5) How are IFs interlaced in microbe-related
tumorigenesis (see, for example [164])?

The elucidation of these mechanisms will help to increase our functional understanding of the
keratin cytoskeleton and will provide novel strategies for interfering with microbial infections.
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